
Structural Health Monitoring Tools
(SHMTools)

Getting Started

LANL/UCSD Engineering Institute

LA-CC-14-046
LA-UR-14-21088

c© Copyright 2014, Los Alamos National Security, LLC
All rights reserved.

May 30, 2014

LA-CC-14-046 LA-UR-14-21088

Contents

1 Introduction to SHMTools . 2

2 Installation . 3

3 SHMFunctions . 4
3.1 Data Acquisition module . 4
3.2 Feature Extraction module . 4
3.3 Feature Classification module . 5
3.4 Auxiliary module . 6

4 Documentation . 7

5 Examples . 8

6 Importing Data . 9

7 Using mFUSE with SHMTools 10

c© Copyright 2014, Los Alamos National Security, LLC 1

LA-CC-14-046 LA-UR-14-21088

1 Introduction to SHMTools

SHMTools is a MATLAB package that facilitates the construction of structural
health monitoring (SHM) processes. The package provides a set of functions or-
ganized into modules according to the three primary stages of Structural Health
Monitoring: Data Acquisition, Feature Extraction, and Damage Detection. A
modular function design and a set of standardized parameter formats make it
easy to assemble and test customized SHM processes. A couple of assembly rou-
tines are provided along with SHMTools. The first is a general GUI interface
called mFUSE (provided separately with its own documentation) that can be
used to build an entire SHM process by simply specifying a sequence of functions
from the various modules. The second assembly routine is more specialized: it
is used to build a custom detector by combining pieces from within the Damage
Detection module.

SHMTools is made available for free by the LANL/UCSD Engineering In-
stitute. It is the beginning of a larger effort to collect and archive proven
approaches to SHM for re-use by the research community. The package there-
fore includes various algorithms with source codes, along with structural data
to serve as benchmarks for the evaluation of algorithms.

c© Copyright 2014, Los Alamos National Security, LLC 2

LA-CC-14-046 LA-UR-14-21088

2 Installation

SHMTools download

Download the file SHMTools.zip from http://institute.lanl.gov/ei/software-and-data/.
Unzip the files into a directory of your choice and add this directory including
sub-directories to the MATLAB path (in MATLAB click File 7→ Set Path 7→
Add with subfolders).

At the top level directory one can find the SHMFunctions folder, Documen-
tation and Examples folders, which are discussed in the following sections.

c© Copyright 2014, Los Alamos National Security, LLC 3

http://institute.lanl.gov/ei/software-and-data/

LA-CC-14-046 LA-UR-14-21088

3 SHMFunctions

In this section we describe the various modules within the SHMFunctions folder
of SHMTools in more detail. The Data Acquisition module deals with inter-
facing with existing commercial DAQ systems and returns raw data (e.g. time
series) to the Feature Extraction module. Functions in the Feature Extraction
module take the raw data, perform pre-processing steps, and extract damage
sensitive features to be used by the Feature Classification modules. The Feature
Classification module implements various approaches to classification: given a
set of training examples (examples are feature vectors), these functions build
models that serve to classify future examples. The SHMTools package include
additional functions implementing algorithms that support the SHM process,
e.g. sensor diagnostic and optimal sensor placement tools. These support func-
tions are collected in an “Auxiliary module” which we discuss last.

3.1 Data Acquisition module

These functions provide basic services for common SHM related data acquisition
tasks. Currently the software supports basic functionality for MATLAB DAQ
Toolbox-supported hardware as well as interfacing with National Instruments
high speed digitizers, function generators, and switches not otherwise supported
with the DAQ Toolbox.

We note that the user of SHMTools has the flexibility to import his own
(raw) data into the system and is not required to use the functions provided in
the Data Acquisition module. This data can be used directly by the Feature Ex-
traction module provided it’s in the required matrix form. For instance for time
series data collected from multiple channels, the data is expected in the form
of a 3-dimensional matrix of time × channels × instances. See the Parameter
Specifications document for more information.

3.2 Feature Extraction module

The functions in this group take the data (generally in the form of time series)
as input, perform various analysis and pre-processing tasks, and extract features
that can be used in the detection phase. The feature extraction algorithms are
divided into the following submodules:

• ActiveSensing: Functions for managing, visualizing, and extracting fea-
tures for ultrasonic wave propagation-based active sensing.

• ConditionBasedMonitoring: Functions for resampling and analyzing
data from rotating machinery that is best represented in the angular do-
main..

• ModalAnalysis: Functions that take in either a matrix of time series, or
frequency response functions, and return modal properties such as mode
shapes, natural frequencies, and damping ratios.

c© Copyright 2014, Los Alamos National Security, LLC 4

LA-CC-14-046 LA-UR-14-21088

• Preprocessing: Functions to perform standard DSP tasks such as filter-
ing, windowing, and enveloping signals.

• SpectralAnalysis: Functions that perform various frequency and time-
frequency analysis methods and visualize the results.

• Statistics: Functions to compute various statistical measures from a ma-
trix of signals for use as features.

• TimeSeriesModels: Functions that fit and evaluate time series models
and generate features in the form of model parameters and RMS model
errors.

3.3 Feature Classification module

Currently, the classification algorithms work in two phases. The training or
learning phase takes feature vectors of normal conditions, and builds a model
of the normal conditions. This model is subsequently used in the detection or
scoring phase to flag future feature vectors as normal/undamaged or abnor-
mal/damaged. The detection functions are organized in three groups:

• Nonparametric: No distributional assumption is made about the phe-
nomena generating the undamaged data. Example: kernel density esti-
mators.

• SemiParametric: Here the data space is partitioned into multiple cells
using any of many possible procedures (e.g. k-means, k-d trees) and a
parametric model (e.g. a Gaussian) is learned for each cell (group of
feature vectors).

• Parametric: The algorithms here are built with an underlying assump-
tion about the phenomena generating the data. For example, one might
assume that the underlying undamaged distribution is a Gaussian, in
which case we could just use the Mahalanobis distance between points
(this is equivalent to using the log-likelihood of a fitted multidimensional
Gaussian).

The algorithms from each group come in pairs of “learn” and “score” func-
tions or “train” and “detect”. For example in the Parametric group, the
learnMahalanobis shm function learns the parameters of a Mahalanobis dis-
tance function from the training data provided; the scoreMahalanobis shm

function will then use these parameters to evaluate the similarity of future
points with the original training data. The difference between “learn” and
“score” pairs or “train” and “detect” pairs, is that “train” and “detect” im-
plies that a threshold is automatically determined by the detection routine for
a specified confidence level.

As a Convention: The scores returned by a “score” function are inter-
preted as follows: the higher the score of a sample, the closer the sample is to

c© Copyright 2014, Los Alamos National Security, LLC 5

LA-CC-14-046 LA-UR-14-21088

the normal conditions. This way detection simply consists of thresholding the
score values, i.e. every score under a certain threshold is indicative of damage.

Assembling detection routines:

The detection routines are customizable in that the user could pick from various
sub-routines to implement a detection algorithm. For instance a Semiparamet-
ric routine can be assembled by picking from a choice of partitioning functions, a
choice of parametric models (such as a Gaussian) to obtain a detector that con-
sists of first partitioning the data space, then learning the particular parametric
model on each cell of the partition.

Default mechanism: The user calls assembleOutlierDetector shm which
will navigate the various options available and produce a training routine called
trainOutlierDetector < ... > (with appended time stamp). This training
routine will take in the training data (under normal conditions) and learn a
model of the normal conditions according to the various choices made during as-
sembly, and also produces a threshold for future detections. The learned model
and threshold are subsequently used by detectOutlier shm to flag future data
as damaged or undamaged. A training routine (trainOutlierDetector shm)
is also included as an example of an assembled routine, which implements a
semiparametric detector consisting of fitting a Gaussian mixture model to the
training data after partitioning with the kmeans shm function.

3.4 Auxiliary module

These functions provide basic services that support the SHM process. Currently
these services are divided into two groups:

• Plotting: Functions for performing general plotting tasks not specific to
any step in the SHM process.

• Sensor Support: Sensor Diagnostic functions for assessing piezoelec-
tric sensor functionality through impedance-based methods and Optimal
Sensor Placement functions for designing modal analysis-based sensing
networks.

c© Copyright 2014, Los Alamos National Security, LLC 6

LA-CC-14-046 LA-UR-14-21088

4 Documentation

All documentation can be found in the Documentation folder of the SHMTools
directory. The four documents described below are provided in addition to this
one.

Header Specifications

The document HeaderrSpecs.pdf provides the standard used for function headers
in SHMTools functions.

Parameter Specifications

The document ParameterSpecs.pdf provides general parameter standards to fa-
cilitate communication between the various group of functions.

Function Library

The document FunctionLibrary.pdf serves as a central “help” file for all SHM-
Tools functions.

Example Usages

Extensive documentation is provided as “example usage” documents that walk
the user through various ways of using the software package. These are collected
in a central document (ExampleUsages.pdf). We highlight a few of them below
that are good starting examples.

• exampleDAQ ARModel Mahalanobis.html : Illustrates the full SHM pro-
cess, from data acquisition to detection.

• exampleDefaultThresholdingUsage.html : Shows how to use the “train” and
“detect” outlier functions described above.

• exampleAssembleCustomDetector.html : Explains how to assemble custom
detectors of the various categories.

• exampleModalFeatures.html : Illustrates data normalization for outlier de-
tection using modal properties.

• exampleNLPCA.html : Demonstrates detection based on the Associative
Neural Network algorithm.

c© Copyright 2014, Los Alamos National Security, LLC 7

LA-CC-14-046 LA-UR-14-21088

5 Examples

The Examples folder of the SHMTools directory contains examples for using the
SHMTools functions in various forms. Examples are inluded as “.m” file scripts,
mFUSE session files, and published scripts in HTML. Standard data sets are
also included in the ExampleData folder. The folder is organized as follows:

• ExampleUsageScripts: Various “.m” files used to create the Example
Usages described in the last section.

• mFUSEexamples: Examples of how to use the mFUSE GUI in conjunc-
tion with SHMTools.

• ExampleData: Standard data sets in “.mat” files along with import
functions to be used with the mFUSE GUI.

c© Copyright 2014, Los Alamos National Security, LLC 8

LA-CC-14-046 LA-UR-14-21088

6 Importing Data

Data used in SHM analysis can come in many different types and structures.
To allow many different forms of data to be used with SHMTools, data import
functions are used. Each data import function performs the following three
tasks:

• Locate the dataset file’s path.

• Load the dataset.

• Restructure data as necessary to match SHMTools parameter standards.

With data import functions, datasets can be stored in many different forms
and still be compatible with SHMTools. When writing new data import func-
tions, ensure that the outputs conform to the SHMTools parameter standards
as defined in the Parameter Specifications manual. The ExampleData folder
provides samples of datasets stored as .mat files along with their corresponding
data import functions to use as templates.

c© Copyright 2014, Los Alamos National Security, LLC 9

LA-CC-14-046 LA-UR-14-21088

7 Using mFUSE with SHMTools

mFUSE: Function Sequencer for MATLAB is a Java based graphical user inter-
face for use with MATLAB. mFUSE facilitates the development of analytical
processes by allowing users to quickly and intuitively connect MATLAB func-
tions as steps in a sequence. mFUSE will help you easily develop and compare
similar processes. Using mFUSE together with SHMTools can simplify your
thinking while increasing productivity.

Tutorial for SHMTools and mFUSE

The following tutorial will guide you through the basic steps for building a
process from SHMTools functions using the mFUSE interface. This tutorial
provides step-by-step instructions to recreate the Simple Complete Analysis ex-
ample provided with SHMTools. New SHMTools and mFUSE users should start
here to become familiar with both packages.

1. Download SHMTools.zip and mFUSE.zip from http://institute.lanl.

gov/ei/software-and-data/SHMTools/

2. Extract SHMTools.zip into desired directory

3. Extract mFUSE.zip into desired directory

4. Install and launch mFUSE (see Part II of mFUSE Help.pdf manual)

5. Add SHMTools directories to mFUSE Function Library

(a) Select Function Library then Add Library Path from mFUSE menu
bar

(b) Read warning and click OK

(c) Navigate into SHMTools\SHMFunctions directory

(d) Click Open

(e) Repeat steps a-d for SHMTools\Examples\ExampleData directory

6. Add Import 3 Story Structure Dataset function to sequence

(a) Click on Example Data folder in Function Library to expand the
folder

(b) Double-Click Import 3 Story Structure Dataset function to add it to
sequence

7. Add QuickStep to sequence to remove channel 1 input measurements

(a) Click and hold on the QS logo just below the sequence list

(b) Drag the mouse over the Sequence list below Step 1

(c) Release the mouse to drop the new QuickStep into the sequence

c© Copyright 2014, Los Alamos National Security, LLC 10

http://institute.lanl.gov/ei/software-and-data/SHMTools/
http://institute.lanl.gov/ei/software-and-data/SHMTools/

LA-CC-14-046 LA-UR-14-21088

(d) In Body box on right panel type:

outputChannels = allData(:,2:5,:);

(e) Click OK

8. Connect allData input for QuickStep to Dataset output from Step 1

(a) Make sure QS: outputChannels = allData(:,2:5,:); is highlighted in
Sequence List

(b) Right-Click in Value column for allData variable under Inputs on
right panel

(c) Move the mouse over 1: Import 3 Story Structure Dataset to expand
menu

(d) Click on Dataset output

9. Add and configure Statistical Moments function as Step 3 of sequence

(a) Navigate to SHMFunctions\Feature Extraction\Time Series in Func-
tion Library

(b) Add Statistical Moments function to sequence

(c) Connect Time Series Data input for Step 3 to outputChannels output
from Step 2

10. Add and configure Split Features Into Training and Scoring function as
Step 4 of sequence

(a) Navigate to SHMFunctions\Feature Extraction in Function Library

(b) Add Split Features Into Training and Scoring function to sequence

(c) Connect Features input for Step 4 to Statistics Feature Vectors out-
put from Step 3

(d) Right-Click in Value column for Training Indices input for Step 4

(e) Click Enter User Value

(f) For the user value, type:

1:90

11. Add and configure Train Outlier Detector function as Step 5 of sequence

(a) Navigate to SHMFunctions\Feature Classification\Outlier Detection
in Function Library

(b) Add Train Outlier Detector function to sequence

(c) Connect Training Features input for Step 5 to Training Features out-
put from Step 4

12. Add and configure Detect Outlier function as Step 6 of sequence

c© Copyright 2014, Los Alamos National Security, LLC 11

LA-CC-14-046 LA-UR-14-21088

(a) Navigate to SHMFunctions\Feature Classification\Outlier Detection
in Function Library

(b) Add Detect Outlier function to sequence

(c) Connect Test Features input for Step 6 to Scoring Features output
from Step 4

(d) Connect Models input for Step 6 to Models output from Step 5

13. Add and configure Plot Scores function as Step 7 of sequence

(a) Navigate to SHMFunctions\Feature Classification in Function Li-
brary

(b) Add Plot Scores function to sequence

(c) Connect Scores input for Step 7 to Scores output from Step 6

(d) Connect States input for Step 7 to Results output from Step 6

(e) Set State Names input to a user value of:

{’Undamaged’,’Damaged’}

(f) Connect Thresholds input for Step 7 to Threshold output from Step
6

(g) Set Flip Signs input to a user value of:

true

14. Add and configure Plot Score Distributions function as Step 8 of sequence

(a) Navigate to SHMFunctions\Feature Classification in Function Li-
brary

(b) Add Plot Score Distributions function to sequence

(c) Connect Scores input for Step 7 to Scores output from Step 6

(d) Connect Damage States input for Step 7 to Damage States output
from Step 1

(e) Connect Thresholds input for Step 7 to Threshold output from Step
6

(f) Set Flip Signs input to a user value of:

true

15. Execute sequence by clicking Execute below the Sequence List

16. Open Simple Complete Analysis session and compare

(a) Select File then Open Session from mFUSE menu bar

(b) Save current session if desired

(c) Navigate into SHMTools\Examples\mFUSEexamples\SimpleCompleteAnalysis
directory

c© Copyright 2014, Los Alamos National Security, LLC 12

LA-CC-14-046 LA-UR-14-21088

(d) Click on SimpleCompleteAnalysis.ses file

(e) Click Open

(f) Execute Simple Complete Analysis example

c© Copyright 2014, Los Alamos National Security, LLC 13

	Introduction to SHMTools
	Installation
	SHMFunctions
	Data Acquisition module
	Feature Extraction module
	Feature Classification module
	Auxiliary module

	Documentation
	Examples
	Importing Data
	Using mFUSE with SHMTools

